bernoulli distribution

Binomial Distribution์€ Bernoulli Distribution with mutliple trials๋กœ ์ดํ•ดํ•˜๋ฉด ์ข‹์Šต๋‹ˆ๋‹ค.For a random variable X, ์ด๋ฒคํŠธ์˜ ๊ฒฐ๊ณผ๊ฐ€ ๋‘๊ฐœ์˜ ์˜ต์…˜๋ฐ–์— ์กด์žฌํ•˜์ง€ ์•Š๋Š”๋‹ค๋ฉด, ์ด๋ฅผ ์šฐ๋ฆฌ๋Š” ๋ฒ ๋ฅด๋ˆ„์ด ๋ถ„ํฌ๋ผ๊ณ  ๋ถ€๋ฆ…๋‹ˆ๋‹ค.ํ™•๋ฅ  p์— ๋Œ€ํ•˜์—ฌ X~Bern(p)๋กœ ํ‘œ๊ธฐํ•˜๊ณ , ์ด๋Š” X~B(1,p)์™€ ๋™์ผํ•ฉ๋‹ˆ๋‹ค. ๋ฒ ๋ฅด๋ˆ„์ด ๋ถ„ํฌ์— ๋Œ€ํ•ด์„œ ์กฐ๊ธˆ๋งŒ ๋” ์•Œ์•„๋ณด์ž๋ฉด,E(x) = 1*p + 0*(1-p) = p Variance = p(1-p)STDEV = sqrt(p(1-p))์ž…๋‹ˆ๋‹ค. ๊ด€๋ก€์ ์œผ๋กœ ์šฐ๋ฆฌ๋Š” ๋‘๊ฐœ์˜ ๊ฒฐ๊ณผ ์ค‘ ๋”์šฑ ํ™•๋ฅ ์ด ๋†’์€ ๊ฒฐ๊ณผ๋ฅผ p๋กœ, ๊ทธ๋ ‡์ง€ ์•Š์€ ๊ฒƒ์„ 1-p, ํ˜น์€ q๋กœ ๋‚˜ํƒ€๋ƒ…๋‹ˆ๋‹ค.๋˜ํ•œ, ์šฐ๋ฆฌ๋Š” ๋ฒ ๋ฅด๋ˆ„์ด ๋ถ„ํฌ๋ฅผ ์ ์šฉํ•˜๊ณ  ์‹ถ์€ ์ƒํ™ฉ์—, ๊ฐ ์ด๋ฒคํŠธ์— 1๊ณผ 0..
Chan Lee
'bernoulli distribution' ํƒœ๊ทธ์˜ ๊ธ€ ๋ชฉ๋ก