In a simple linear regression line (LMS), the regression line can be expressed as following equation:y = ax + bwherey = The variable that you want to predict (์์ธกํ๊ณ ์ถ์ ๊ฐ) | Dependent variable (์ข
์ ๋ณ์)x = The variable that you are using to predict (์์ธก์ ์ฌ์ฉํ๋ ๊ฐ) | Independent variable (๋
๋ฆฝ ๋ณ์)a = Slope (๊ธฐ์ธ๊ธฐ)b = y-intercept (y ์ ํธ) ๊ทธ๋ ๋ค๋ฉด, y = ax+b ์์ slope(a)์ y-intercept(b)๋ ์ด๋ป๊ฒ ๊ตฌํ๋์ง ์์๋ณด๊ฒ ์ต๋๋ค. Recall, r ..
์ค๋ธ์
When there are two numerical variables, there are TrendPositive associationNegative association PatternAny discernible "shape" in the scatterLinear Non-linear Visualize, then quantify The Correlation Coefficient rMeasures linear association. It is based on the standard units. r is defined as:The average of product of (x in standard units) and (y in standard units) ํ์ค ๋จ์ x์ ํ์ค ๋จ์ y์ ๊ณฑ์ ํ๊ท In P..