์˜ค๋ธ”์™„

In a simple linear regression line (LMS), the regression line can be expressed as following equation:y = ax + bwherey = The variable that you want to predict (์˜ˆ์ธกํ•˜๊ณ  ์‹ถ์€ ๊ฐ’) | Dependent variable (์ข…์† ๋ณ€์ˆ˜)x = The variable that you are using to predict (์˜ˆ์ธก์— ์‚ฌ์šฉํ•˜๋Š” ๊ฐ’) | Independent variable (๋…๋ฆฝ ๋ณ€์ˆ˜)a = Slope (๊ธฐ์šธ๊ธฐ)b = y-intercept (y ์ ˆํŽธ) ๊ทธ๋ ‡๋‹ค๋ฉด, y = ax+b ์—์„œ slope(a)์™€ y-intercept(b)๋Š” ์–ด๋–ป๊ฒŒ ๊ตฌํ•˜๋Š”์ง€ ์•Œ์•„๋ณด๊ฒ ์Šต๋‹ˆ๋‹ค. Recall, r ..
When there are two numerical variables, there are  TrendPositive associationNegative association PatternAny discernible "shape" in the scatterLinear Non-linear Visualize, then quantify  The Correlation Coefficient rMeasures linear association. It is based on the standard units. r is defined as:The average of product of (x in standard units) and (y in standard units) ํ‘œ์ค€ ๋‹จ์œ„ x์™€ ํ‘œ์ค€ ๋‹จ์œ„ y์˜ ๊ณฑ์˜ ํ‰๊ท   In P..
Chan Lee
'์˜ค๋ธ”์™„' ํƒœ๊ทธ์˜ ๊ธ€ ๋ชฉ๋ก