Notice
Recent Posts
Recent Comments
Link
일 | 월 | 화 | 수 | 목 | 금 | 토 |
---|---|---|---|---|---|---|
1 | 2 | 3 | 4 | 5 | ||
6 | 7 | 8 | 9 | 10 | 11 | 12 |
13 | 14 | 15 | 16 | 17 | 18 | 19 |
20 | 21 | 22 | 23 | 24 | 25 | 26 |
27 | 28 | 29 | 30 |
Tags
- string
- 문자열
- 백준
- assignment operator
- 반복문
- array
- 포인터
- C++
- programming
- vscode
- 파이썬
- 티스토리챌린지
- OOP
- Python
- 알고리즘
- Pre-processing
- baekjoon
- Object Oriented Programming
- 함수
- predictive analysis
- Deep Learning
- 오블완
- raw data
- function
- const
- 배열
- Data Science
- Class
- pass by reference
- pointer
Archives
- Today
- Total
Channi Studies
[Algorithm] Big-O Notation | 빅 오 표기법 본문
Data Science/Data Structure & Algorithm
[Algorithm] Big-O Notation | 빅 오 표기법
Chan Lee 2025. 3. 12. 13:02Big O notation is a mathematical way of describing how a function (running time of an algorithm) generally behaves in relation to the input size.
Given a function that describes the running time of an algorithm, the Big O notation for that function can be determined using the following rules:
- If f(N) is a sum of several terms, the highest order term (the one with the fastest growth rate) is kept and others are discarded.
- If f(N) has a term that is a product of several factors, all constants (those that are not in terms of N) are omitted.
For example, if the given algorithm steps, f(N) = 7N^2 + 13N + 5, then
O(f(N)) = O(7N^2 + 13N + 5) = O(7N^2) = O(N^2)
There are some rules for determining Big O notation for composite functions:

Some examples of Big O notation are:
Big O | O(N^2 + 9999) | O(6N^3 + 2N + 3) | 10*O(N^4) | 2N^3+O(N^2) | O(734N) |
Simplified Big O | O(N^2) | O(N^3) | O(N^4) | O(N^3) | O(N) |
'Data Science > Data Structure & Algorithm' 카테고리의 다른 글
[Sorting] Insertion Sort (0) | 2025.03.17 |
---|---|
[Sorting] Introduction & Selection Sort (0) | 2025.03.16 |
[Algorithm] Growth of Functions and Complexity (0) | 2025.03.12 |
[Algorithm] Constant Time Operation (0) | 2025.03.12 |
[Algorithm] Searching: Linear Search & Binary Search (0) | 2025.03.12 |