Data Science

์กฐํ•ฉ๋ก (Combinatorics)์˜ ์ค‘์š”ํ•œ ์š”์†Œ ์ค‘ ํ•˜๋‚˜์ธ ์ˆœ์—ด(Permutation)์€ ์š”์†Œ๋“ค์„ ์–ด๋–ป๊ฒŒ ๋‚˜์—ดํ•  ์ˆ˜ ์žˆ๋Š”์ง€๋ฅผ ๊ตฌํ•˜๋Š” ๊ฒƒ์— ์ง‘์ค‘ํ•ฉ๋‹ˆ๋‹ค. ์˜ˆ๋ฅผ ๋“ค์–ด ์›”๋“œ์ปต์—์„œ A, B, C ๊ตญ๊ฐ€๊ฐ€ 1~3๋“ฑ์„ ์ฐจ์ง€ํ–ˆ๋‹ค๋Š” ์ •๋ณด๋งŒ ์•Œ๊ณ  ์žˆ์„ ๋•Œ, ๊ฐ€๋Šฅํ•œ ๋ชจ๋“  ๋“ฑ์ˆ˜๋ฅผ ๊ตฌํ•ด๋ด…์‹œ๋‹ค.1๋“ฑ2๋“ฑ3๋“ฑABCACBBACBCACABCBA์ด ๊ฐ€๋Šฅํ•œ ๊ฒฝ์šฐ์˜ ์ˆ˜๋Š” 6๊ฐœ๋กœ, ๊ทธ ๊ฐ€๋Šฅํ•œ ๊ฐ€์ง“์ˆ˜๋Š” 3 * 2 * 1 = 3! ์ด์˜€์Šต๋‹ˆ๋‹ค. n๊ฐœ์˜ ์š”์†Œ๋“ค ์ค‘์—์„œ r๊ฐœ์˜ ์š”์†Œ๋ฅผ ๋‚˜์—ดํ•  ๋•Œ (ํ˜น์€ ๋ฝ‘์„ ๋•Œ), ๊ฐ€๋Šฅํ•œ ๊ฐ€์ง“์ˆ˜์ธ nPr์€ ๋‹ค์Œ๊ณผ ๊ฐ™์Šต๋‹ˆ๋‹ค.nPr = n! / (n-r)!์šฐ๋ฆฌ์˜ ์˜ˆ์‹œ์—์„œ n = 3, r = 3 ์ด์˜€์œผ๋ฏ€๋กœ 3P3 = 3! / (3-3)! = 3! / 1 = 3! = 6 ์ด์˜€์Šต๋‹ˆ๋‹ค.(0 ํŒฉํ† ๋ฆฌ์–ผ์€ 1์ž…๋‹ˆ๋‹ค)  ์—ฌ๊ธฐ์„œ ๋‹ค ์•„์‹œ๊ฒ ์ง€..
์ด๋ฒคํŠธ A์˜ ์—ฌ์ง‘ํ•ฉ(Complements) ์€ A'์œผ๋กœ ํ‘œ๊ธฐํ•˜๋ฉฐ, A๊ฐ€ ๋ฐœ์ƒํ•˜์ง€ ์•Š์„ ๋ชจ๋“  ํ™•๋ฅ ์„ ์ผ์ปซ๋Š”๋‹ค. (A^c๋กœ ํ‘œ๊ธฐํ•˜๊ธฐ๋„ ํ•ฉ๋‹ˆ๋‹ค.)์ฆ‰, P(A) + P(A') = 1 ์ด๊ณ , ์ด ๋ง์€ P(A') = 1 - P(A) ์ด๋‹ค.๋˜ํ•œ P((A')') = P(A)์ด๋‹ค. (์—ฌ์ง‘ํ•ฉ์˜ ์—ฌ์ง‘ํ•ฉ์€ ์›๋ณธ ์ง‘ํ•ฉ) ์—ฌ์ง‘ํ•ฉ์˜ ์ ์ ˆํ•œ ํ™œ์šฉ์€ ๊ณ„์‚ฐ์„ ๋” ์šฉ์ดํ•˜๊ฒŒ ํ•œ๋‹ค.P(A) = ์ฃผ์‚ฌ์œ„์—์„œ 1, 2, 3, 4, 6์ด ๋‚˜์˜ฌ ํ™•๋ฅ ์ด๋ผ๊ณ  ํ•ด๋ณด์ž.P(A) = 1- P(A')์ด๊ณ , ์ด ๋ง์˜ ๋œป์€ P(A) = 1 - (5๊ฐ€ ๋‚˜์˜ฌ ํ™•๋ฅ ) ์ด๋‹ค.5๊ฐ€ ๋‚˜์˜ฌ ํ™•๋ฅ ์€ 1/6์ด๊ธฐ ๋•Œ๋ฌธ์—, P(A) = 1 - 1/6 = 5/6์ด๋‹ค.  1~6๊นŒ์ง€ 5๋ฅผ ์ œ์™ธํ•˜๊ณ  ๊ฐ ์ˆซ์ž๊ฐ€ ๋‚˜์˜ฌ ํ™•๋ฅ ์„ ๊ตฌํ•ด ๋”ํ•˜๋Š”๊ฒƒ๋ณด๋‹ค 5๊ฐ€ ๋‚˜์˜ฌ ํ™•๋ฅ ์„ ๊ตฌํ•ด์„œ 1์—์„œ ๋นผ๋Š”๊ฒŒ ๋”์šฑ ํŽธ๋ฆฌํ•˜๋‹ค.
2๊ฐœ์˜ ์ฃผ์‚ฌ์œ„๋ฅผ ๋˜์ ธ์„œ ๋‚˜์˜จ ๊ฐ’์˜ ํ•ฉ์˜ ํ™•๋ฅ ์„ ๊ตฌํ•˜๊ณ  ์‹ถ๋‹ค๊ณ  ํ•ด๋ณด๊ฒ ์Šต๋‹ˆ๋‹ค. ๋‚˜์˜ค๋Š” ๊ฐ’๋“ค์„ ํ‘œ๋กœ ๋งŒ๋“ค๋ฉด ๋‹ค์Œ๊ณผ ๊ฐ™์ด ๋˜๊ฒ ์ฃ ?(1, 1) = 2(1, 2) = 3(1, 3) = 4(1, 4) = 5(1, 5) = 6(1, 6) = 7(2, 1) = 3(2, 2) = 4(2, 3) = 5(2, 4) = 6(2, 5) = 7(2, 6) = 8(3, 1) = 4(3, 2) = 5(3, 3) = 6(3, 4) = 7(3, 5) = 8(3, 6) = 9(4, 1) = 5(4, 2) = 6(4, 3) = 7(4, 4) = 8(4, 5) = 9(4, 6) = 10(5, 1) = 6(5, 2) = 7(5, 3) = 8(5, 4) = 9(5, 5) = 10(5, 6) = 11(6, 1) = 7(6, 2) = 8(6, 3) ..
Expected Value๋ž€, ์šฐ๋ฆฌ๊ฐ€ ์‹คํ—˜์„ ์—ฌ๋Ÿฌ๋ฒˆ ๋ฐ˜๋ณตํ–ˆ์„ ๋•Œ, ๊ด€์ธก๋  ๊ฒฐ๊ณผ์˜ ํ‰๊ท ์œผ๋กœ ์˜ˆ์ธกํ•˜๋Š” ๊ฐ’ ์ž…๋‹ˆ๋‹ค.์—ฌ๊ธฐ์„œ ์‹คํ—˜(experiment)์˜ ์ •ํ™•ํ•œ ์ •์˜๋ฅผ ์•Œ๊ณ  ๊ฐ€์•ผ๊ฒ ์ฃ ? ๊ฐ€๋ น ์šฐ๋ฆฌ๊ฐ€ ๋™์ „์„ ๋˜์ ธ์„œ ์•ž๋ฉด์ด ๋‚˜์˜ฌ ํ™•๋ฅ ์ธ P(A)๋ฅผ ๋ชจ๋ฅธ๋‹ค๊ณ  ๊ฐ€์ •ํ•ด๋ด…์‹œ๋‹ค.๊ทธ๋ž˜์„œ ์šฐ๋ฆฌ๋Š” ์ฝ”์ธ ํ† ์Šค๋ฅผ ๋งŽ์ด ๋ฐ˜๋ณตํ•ด์„œ ๋‚˜์˜จ ๊ฒฐ๊ณผ๋ฅผ ๊ด€์ฐฐํ•ด์„œ, ์ด ๊ฐ’์˜ ํ‰๊ท ์„ ๋‚ผ ๊ฒƒ ์ž…๋‹ˆ๋‹ค.ํ•œ๋ฒˆ ๋˜์ ธ์„œ ๊ฒฐ๊ณผ๋ฅผ ๊ด€์ธกํ•˜๋Š”, ์ด ํ•œ๋ฒˆ์˜ ํ–‰์œ„๋ฅผ ์šฐ๋ฆฌ๋Š” ์‹œ๋„(trial)์ด๋ผ๊ณ  ๋ถ€๋ฆ…๋‹ˆ๋‹ค.๊ทธ๋ฆฌ๊ณ  ์ด ์‹œ๋„๋“ค์ด ์—ฌ๋Ÿฌ๋ฒˆ ๋ฐ˜๋ณต๋˜๋Š” ๊ณผ์ •์„ ์‹คํ—˜์œผ๋กœ ์ •์˜ํ•ฉ๋‹ˆ๋‹ค.  ์˜ˆ๋ฅผ ๋“ค์–ด ์šฐ๋ฆฌ๊ฐ€ 20๋ฒˆ ๋™์ „์„ ๋˜์ ธ์„œ ๊ด€์ฐฐํ•œ๋‹ค๊ณ  ํ–ˆ์„ ๋•Œ,์ด๋Š” '20๋ฒˆ์˜ ๊ฐœ๋ณ„์ ์ธ ์‹œ๋„๊ฐ€ ์žˆ๋Š” 1๋ฒˆ์˜ ์‹คํ—˜' ์ž…๋‹ˆ๋‹ค.  Experimental Probabilities | Theoretical Probabil..
Chan Lee
'Data Science' ์นดํ…Œ๊ณ ๋ฆฌ์˜ ๊ธ€ ๋ชฉ๋ก (6 Page)